

Coevolution in a warming world: an experimental test of the geographic mosaic of coevolution

Quint Rusman, Tyler Figueira, Juan Traine, Florian P. Schiestl

Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland.

quint.rusman@systbot.uzh.ch

According to the geographic mosaic theory of coevolution (GMTC), coevolution varies with abiotic and biotic environmental factors. We assessed this hypothesis using experimental plant-butterfly coevolution and by testing the effects of temperature and the presence of mutualistic bumblebees on co-divergence during six generations of selection. Butterflies are mutualistic by pollinating plants and antagonistic by ovipositing on plants from which caterpillars feed. We found unique plant-butterfly coevolutionary trajectories in response to abiotic and biotic factors: plants evolved strong herbivore resistance when exposed to either bumblebee presence or elevated temperatures, while their combination led to less strong plant-resistance evolution and the evolution of butterfly-foraging traits. We provide experimental proof for the GMTC and show rapid divergent coevolution to the combination of local abiotic and biotic conditions.